Matematik, biyoloji ve Evrim
Biyolojinin ayaklarının yere daha sağlam basmasını sağlayan, matematiktir.
Biyolojinin temel bilimlerde kısmen "dışlanıyor" olmasının nedeni, matematiksel açıdan "boşlukta" olmasıdır. Çünkü henüz biyolojinin matematiğini çözebilmiş değiliz. Örneğin havada serbest bıraktığımız topun yere ne zaman düşeceğini milisaniyeler düzeyinde başarıyla hesaplayabiliriz. Ancak genlerinize bakarak matematiksel olarak boyunuzun 6 yaş 4 ay 2 günlükken kaç santimetre ve kaç milimetre olacağını bilemiyoruz. Hatta işin komik tarafı, vücudumuzda kaç hücre olduğunu bile bilmiyoruz! Ancak bunların sebebi, biyolojinin "gizemli" olması falan değil. Bunların sebebi, biyolojik yapıların son derece doğrusal olmayan ve kaotik sistemler olmasıdır. Bunu bir robota benzetebiliriz: önümüze konulan bir robotun tüm teknik detaylarını bilmediğimiz ölçüde onun işleyişini öngörmemiz mümkün değildir. Tahminlerde bulunabilirsiniz, deneme-yanılma yöntemlerine başvurabilirsiniz, birçok testten geçirerek sonuçları istatistiki olarak analiz edebilirsiniz, tersine-mühendislik yöntemleriyle sonuçlara varabilirsiniz; ancak tamamen bilmeniz çok zordur.
EVRİM TEORİSİNE MATEMATİĞİN KATKISI
İşte biz de, biyolojide aynen bunu yaparız: sistemler çok karışık, çok kaotik, çok düzensiz olduğu için, büyük gruplar halinde ele alıp, tekil incelemeler yapıp, sonrasında istatistiki analizlerden geçirerek sonuçlara varmaya çalışırız. Aslında tüm bilimler böyle çalışır. Fakat diğer bilimlerde, sistemlerin biyolojik yapılar kadar karışık olmamasından ötürü hata payları oldukça azaltılabilir ve her seferinde kesin (veya kesine çok yakın) sonuçlar verebilecek teoriler geliştirilebilir: Kütleçekim Teorisi, Gazların Kinetik Teorisi, Makina Teorisi gibi... Biyolojide geliştirdiğimiz teoriler ise, çok daha geniş hata paylarına, daha fazla istisnalara, daha esnek tanımlara sahiptir. Ancak nasıl ki fizik ve uygulamalı bilimler (mühendislik) sahalarındaki teorilerimiz sayesinde bugün kıtalar arası seyahat edebiliyor, Ay'a gidebiliyor, on binlerce kilometre öteden ses ve görüntü aktarımı yapabiliyorsak; biyoloji teorilerimiz sayesinde de canlıların nasıl var olduğunu, nasıl değiştiğini, nasıl geliştiğini, nasıl evrimleştiğini anlayabiliyoruz. Bu biyoloji teorilerimiz sayesinde "evrenin en karmaşık yapısı" olarak tanımlanan beynin nasıl çalıştığını giderek daha iyi şekilde anlıyoruz. Biyolojide geliştirdiğimiz teoriler sayesinde teknolojimize, yapay zekaya, biyolojiden esinlenen mühendisliğe yön verebiliyoruz. Dolayısıyla biyolojinin fizik veya kimya kadar kesin sonuçlar vermemesi, sizlerin yanlış kanılara kapılmasına neden olmasın! Biyoloji de, sıradan bir insanın aklını zorlayabilecek kadar isabetli ve net sonuçlar verebilen bir bilim dalıdır. İşte tüm bu çalışmalarda biyolojinin ayaklarının yere daha sağlam basmasını sağlayan, ele alınan ve incelenen bir gen popülasyonunu, bir canlı popülasyonunu ya da belirli bir bireyin belirli bir özelliğini analiz edebilmemize imkan sağlayan matematiktir. Sadece matematik de değil; matematikle iç içe alanlar olan istatistik ve mühendislik de çok önemli bulgulara ulaşmamızı, çok güçlü teoriler geliştirmemizi sağlamaktadır. İşte bu yazı dizimizde, sizlere bu matematiksel açıklamalardan bahsedecek, biyoojinin belki de pek bilmediğiniz bir tarafını göstermeye çalışacağız.
MATEMATİK VE BİRÇOK İSMİN KATKISI...
Darwin'den sonra gelen bilim insanları, özellikle de biyologlar, çoğu zaman sadece "biyolog" değillerdi. Birçokları mühendislik, matematik, istatistik, sosyal bilimler, iktisat gibi alanlarda uzmanlıkları olan kişilerdi. Evrimsel biyolojinin babaları arasında sayılan ve evrimin matematiğine büyük katkılar sunmuş olan John Maynard Smith, mühendislik öğrencisiydi ve 2. Dünya Savaşı boyunca uçak tasarımları üzerinde kendisini geliştirdi, araştırmalarını bu konuya odakladı. Ancak Maynard Smith, matematiğin en temel kuramları arasında yer alan oyun teorisinin evrime uyarlayarak bu konuda somut çalışmalar yapan ilk bilim insanı oldu. Sonrasında, evrimsel biyoloji alanında yaptığı çalışmalarla seksin evrimine ışık tuttu ve cinsel sinyalleme teorilerini geliştirdi. Bu sayede, az önce de bahsettiğimiz gibi, "evrimin babaları" arasında yerini aldı.
Bir diğer örnek, yine adı bilim tarihine altın harflerle yazılmış olan Ronald Fisher'dır. Fisher, İngiliz bir istatistikçidir; yani özü matematiktir. Ancak aynı zamanda (ve yoğunlukla) evrimsel biyoloji ve genetik alanlarında çalışma yürütmüştür. Bugün bilimin her sahasında kullanılan istatistiki yöntemleri, evrimsel biyoloji sahasında yaptığı çalışmalar sırasında geliştirmiştir. Örneğin ANOVA (çeşitlilik analiz) testi, maksimum benzerlik metodu, güvenilir sonuç metodu, örnekleme dağılımlarının matematiksel çıkarımları Fisher tarafından keşfedilen ya da geliştirilen yöntemlerden sadece birkaçıdır. Üstelik bir istatistikçi olan Fisher, günümüzde modern popülasyon genetiğinin babalarından biri olarak bilinmektedir.
Sewall Wright'ın da benzer bir bilimsel arka planı bulunmaktadır. Kendisi bir genetikçi ve evrimsel biyolog olarak bilinir; ancak bu süreçte yaptığı çalışmalarla hem evrimin matematiğine, hem de matematiğin kendisine ve istatistiğe çok ciddi katkılar sunmuştur. En meşhur keşiflerinden biri, günümüzde matematikte "yol analizi" (path analysis) olarak bilinen ve değişkenlerin birbirine olan yönlendirilmiş bağımlılıklarını tanımlamaya yarayan yöntemidir. Bunun haricinde Wright, doğadaki popülasyonların gerçek sayılarının, matematiksel/teorik sayılar ile örtüşmediğini tespit etmiş ve evrimsel biyolojideki kilit konseptlerden biri olan "etkili popülasyon büyüklüğü" kavramını geliştirmiştir.
MATEMATİĞİN BİYOLOJİDEKİ ZAFERLERİ
Evrimsel biyoloji, matematiksel alandaki zaferlerle doludur. Birçok matematikçi ve mühendis, bu sahada yaptıkları çalışmalar sayesinde biyolojinin matematiğini geliştirmeyi başarmışlardır. Sewall Wright, J.B.S. Haldane, William Hamilton, Edmund Ford, Luigi Cavalli-Sforza ve daha nice isim bunlardan sadece bazılarıdır. Bu kişiler, evrimin doğal seçilim, cinsel seçilim, akraba seçilimi, mutasyonlar, genetik sürüklenme gibi mekanizmalarının arkasında yatan matematiksel ilişkileri ortaya çıkarmak konusunda çok ciddi adımlar atmayı başarmışlardır. Dolayısıyla biyolojinin en hızlı "matematikselleşen" alanlarından biri olan evrimsel biyolojinin gelişimine hız katmışlardır. Popülasyon genetiği sahasında yapılan matematiksel çalışmalar sayesinde, evrimsel biyolojinin de temelleri giderek net tanımlanmış matematiksel temellere oturtulabilmiştir. Kısacası matematik, biyoloji dahilinde basit cebir hesapları şeklinde karşımıza çıkabildiği gibi, karmakarışık diferansiyel denklemler olarak da karşımıza çıkabilmektedir.
https://evrimagaci.org/matematiksel-evrim-1-genel-giris-389
http://www.popecol.org/evrimle-matematigin-ne-alakasi-var/